Genomic Prediction Within and Across Biparental Families: Means and Variances of Prediction Accuracy and Usefulness of Deterministic Equations
نویسندگان
چکیده
A major application of genomic prediction (GP) in plant breeding is the identification of superior inbred lines within families derived from biparental crosses. When models for various traits were trained within related or unrelated biparental families (BPFs), experimental studies found substantial variation in prediction accuracy (PA), but little is known about the underlying factors. We used SNP marker genotypes of inbred lines from either elite germplasm or landraces of maize (Zeamays L.) as parents to generate in silico 300 BPFs of doubled-haploid lines. We analyzed PA within each BPF for 50 simulated polygenic traits, using genomic best linear unbiased prediction (GBLUP) models trained with individuals from either full-sib (FSF), half-sib (HSF), or unrelated families (URF) for various sizes ([Formula: see text]) of the training set and different heritabilities ([Formula: see text] In addition, we modified two deterministic equations for forecasting PA to account for inbreeding and genetic variance unexplained by the training set. Averaged across traits, PA was high within FSF (0.41-0.97) with large variation only for [Formula: see text] and [Formula: see text] [Formula: see text] For HSF and URF, PA was on average ∼40-60% lower and varied substantially among different combinations of BPFs used for model training and prediction as well as different traits. As exemplified by HSF results, PA of across-family GP can be very low if causal variants not segregating in the training set account for a sizeable proportion of the genetic variance among predicted individuals. Deterministic equations accurately forecast the PA expected over many traits, yet cannot capture trait-specific deviations. We conclude that model training within BPFs generally yields stable PA, whereas a high level of uncertainty is encountered in across-family GP. Our study shows the extent of variation in PA that must be at least reckoned with in practice and offers a starting point for the design of training sets composed of multiple BPFs.
منابع مشابه
Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method
The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...
متن کاملمقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین
Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits. The accuracy of prediction of genetic values in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...
متن کاملAccuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملEffect of marker density and trait heritability on the accuracy of genomic prediction over three generations
The aim of this study was to determine the effect of marker density, level of heritability, number of QTLs, and size of training set on the genomic accuracy over three generations. Thereby, a trait was simulated with heritability of 0.10, 0.25 or 0.40. For each animal, a genome with 20 chromosomes, 1 Morgan each, was simulated. Different marker densities (2000, 4000 and 6000 markers) and 400 an...
متن کاملAn Equation to Predict the Accuracy of Genomic Values by Combining Data from Multiple Traits, Populations, or Environments.
Predicting the accuracy of estimated genomic values using genome-wide marker information is an important step in designing training populations. Currently, different deterministic equations are available to predict accuracy within populations, but not for multipopulation scenarios where data from multiple breeds, lines or environments are combined. Therefore, our objective was to develop and va...
متن کامل